Cours esial 1a / mathématiques proba / fiche n^o1 Chardon Marion

FICHE N°1 : Probabilités élémentaires

I) Probabilité d'un évènement

 Ω = espace d'expérience <- à définir à chaque exo

définir aussi : $P(\{\omega_i\})$

(dans beaucoup de cas : $P(\{\omega_i\}=1/|\Omega|)$

évènement A : A $\subset \Omega$ (à définir également de manière explicite).

Relations importantes:

1) $P(\Omega)=1$

2) $P(\emptyset) = 0$

3) si A,B $\subset \Omega$ alors P(AUB)=P(A)+P(B) - P(A \cap B)

4) $P(A^{C}) = 1-P(A)$.

Ø : évènement impossibleA∩B=Ø : A et B incompatibles

tirage uniforme : P([a;b]) = b-a et $P(A) = |A|/|\Omega|$ (|A| : aire de A)

II) Probabilité uniforme sur un ensemble fini

hypothèses:

1) $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$ avec N donné

2) quelque soit i, $P(\{\omega_i\})=1/N$.

quelque soit $A \subset \Omega$, P(A) est donné par :

$$P(A) = \frac{card A}{N} = \frac{|A|}{N} = \frac{\text{\# cas favorables}}{\text{\# cas possibles}}$$

III) Analyse combinatoire

1) permutation : suite **ordonnée** de n objets : Pn = n!

2) arrangement : suite **ordonnée** de p objets parmi n objets :

$$A_n^p = \frac{n!}{(n-p)!} = n.(n-1)...(n-p+1)$$

3) arrangement avec **répétition** : $A_n^p = n^p$

4) combinaison : **combinaison** de p objets parmi n : $C_n^p = \frac{n!}{p!(n-p)!}$

Chardon Marion 30/12/2006

fiche 1 maths proba

Page 2 sur 2

IV) Probabilité conditionnelle

probabilité de A sachant B :
$$P(A|B) = P \frac{(A \cap B)}{P(B)}$$

$$\mathsf{P}_\mathsf{B}(\mathsf{A}) = \mathsf{P}(\mathsf{A}|\mathsf{B})$$

BAYES:

pour tout H_k disjoints et leur union est égale à Ω , et $A \subseteq \Omega$:

$$P(H_{k}|A) = \frac{P(A|H_{k}).P(H_{k})}{\sum_{j=1}^{N} P(A|H_{j}).P(H_{j})}$$

indépendance : $A \perp \!\!\!\!\perp B$ ssi $P(A \cap B) = P(A).P(B)$ si $A \perp \!\!\!\!\perp B$, alors $A \perp \!\!\!\!\perp B^C$, $A^C \perp \!\!\!\!\perp B$, $A^C \perp \!\!\!\!\perp B^C$

mutuelle indépendance : A, B, C indépendants 2 à 2, et $P(A \cap B \cap C) = P(A).P(B).P(C)$.

CHARDON Marion Webmestre

Chardon Marion 30/12/2006